Multi-fingered robot hand optimal task force distribution: Neural inverse kinematics approach
نویسنده
چکیده
Grasping and manipulation force distribution optimization of multi-fingered robotic hands can be formulated as a problem for minimizing an objective function subject to form-closure constraints, kinematics, and balance constraints of external force. In this paper we present a novel neural network for dexterous hand-grasping inverse kinematics mapping used in force optimization. The proposed optimization is shown to be globally convergent to the optimal grasping force. The approach followed here is to let an artificial neural network (ANN) learn the nonlinear inverse kinematics functional relating the hand joint positions and displacements to object displacement. This is done by considering the inverse hand Jacobian, in addition to the interaction between hand fingers and the object. The proposed neural-network approach has the advantages that the complexity for implementation is reduced, and the solution accuracy is increased, by avoiding the linearization of quadratic friction constraints. Simulation results show that the proposed neural network can achieve optimal grasping force. c © 2005 Elsevier B.V. All rights reserved.
منابع مشابه
Grasping Force Prediction for Underactuated Multi-Fingered Hand by Using Artificial Neural Network
In this paper, the feedforward neural network with Levenberg-Marquardt backpropagation training algorithm is used to predict the grasping forces according to the multisensory signals as training samples for specific design of underactuated multifingered hand to avoid the complexity of calculating the inverse kinematics which is appeared through the dynamic modeling of the robotic hand and prepa...
متن کاملKinematic Synthesis of Parallel Manipulator via Neural Network Approach
In this research, Artificial Neural Networks (ANNs) have been used as a powerful tool to solve the inverse kinematic equations of a parallel robot. For this purpose, we have developed the kinematic equations of a Tricept parallel kinematic mechanism with two rotational and one translational degrees of freedom (DoF). Using the analytical method, the inverse kinematic equations are solved for spe...
متن کاملOn computing task-oriented grasps
This paper addresses the problem of optimal grasping of an object with a multi-fingered robotic hand for accomplishing a given task. The task is first demonstrated by a human operator and its force/torque requirements are captured through the usage of a sensorized tool. The grasp quality is computed through a task compatibility criterion. Grasp synthesis is then formulated as a single constrain...
متن کاملNeural Networks for Multi-Finger Robot Hand Control
This paper investigates the employment of Artificial Neural Networks (ANN) for a multi-finger robot hand manipulation in which the object motion is defined in task-space with respect to six Cartesian based coordinates. The approach followed here is to let an ANN learn the nonlinear functional relating the entire hand joints positions and displacements to object displacement. This is done by con...
متن کاملGrasp analysis of a four-fingered robotic hand based on Matlab simmechanics
The structure of the human hand is a complex design comprising of various bones, joints, tendons, and muscles functioning together in order to produce the desired motion. It becomes a challenging task to develop a robotic hand replicating the capabilities of the human hand. In this paper, the analysis of the four-fingered robotic hand is carried out where the tendon wires and a spring return me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Robotics and Autonomous Systems
دوره 54 شماره
صفحات -
تاریخ انتشار 2006